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Abstract. It is a fundamental functionality of a coupler for Earth system modeling to efficiently handle data transfer between 

component models. Routing network generation is a major step for initializing the data transfer functionality. Most existing 

couplers employ an inefficient and unscalable global implementation for routing network generation that relies on collective 

communications. That’s a main reason why the initialization cost of a coupler increases rapidly when using more processor 15 

cores. In this paper, we propose a new Distributed algorithm for Routing network generation (DaRong), which does not 

introduce any collective communication and achieves much lower complexities than the global implementation. DaRong is of 

course much more efficient and scalable than the global implementation, which has been further demonstrated via empirical 

evaluations. DaRong has already been implemented in C-Coupler2. We believe that existing and future couplers can also 

benefit from it. 20 

1 Introduction 

A coupled model regarding Earth system Modelling generally highly depends on existing couplers (Hill et al., 2004; Craig et 

al., 2005; Larson et al., 2005; Balaji et al., 2006; Redler et al., 2010; Craig et al., 2012; Valcke, 2013; Liu et al., 2014; Hanke 

et al., 2016; Craig et al., 2017; Liu et al., 2018), each of which can combine different component models into a whole system 

and handle data interpolation between different model grids and data transfer between component models (Valcke, 2012). In 25 

response to more and more computation resulting from higher and higher resolutions in model development, the parallel 

efficiency of a coupled model on modern high-performance computers becomes more and more critical. Any module in a 

coupled model, including the coupler, can impact or even may damage the parallel efficiency of the whole coupled model. 

Although most existing couplers achieve scalable data transfer and data interpolation, i.e., the data transfer and data 
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interpolation generally can be faster when using more processor cores, there is almost no evidence of scalable initialization of 30 

a coupler. Experiences from OASIS3-MCT and C-Coupler2 have revealed that the initialization cost of a coupler increases 

rapidly when using more processor cores (Craig et al., 2017; Liu et al., 2018). To achieve scalable initialization of couplers, 

this paper tries to make a first step through focusing on the initialization of data transfer.  

 

The functionality of data transfer of couplers is transferring scalar variables or fields on a model grid (called gridded fields 35 

hereafter) from one component model to another via MPI (Message Passing Interface). A component model generally has been 

parallelized through decomposing the cells of a model grid into distinct subsets each of is assigned to an MPI process for 

cooperative concurrent computation, e.g., the sample parallel decompositions in Fig. 1a and 1b. To efficiently transfer gridded 

fields in parallel, Jacob et al. (2005) proposed an approach of MxN communication (called MxN approach) following the 

routing network where each pair of processes from the two component models should have a communication connection only 40 

when they have common grid cells (for example, Fig. 1c). This MxN approach has already been used in existing couplers for 

more than ten years. As the parallel decompositions of component models generally keep constant throughout the whole 

integration, a routing network can also keep constant. Thus, the MxN approach can be achieved with two major steps: 

generating the routing network when initializing the coupler, and transferring gridded fields based on the routing network 

throughout the coupled model integration. In spite of the scalability of the second major step, the first major step in existing 45 

couplers is unscalable, introducing higher cost when using more processor cores. 

 

In this paper, we propose a new Distributed algorithm for Routing network generation (DaRong), which is much faster and 

consumes much less memory than the existing approach. The remainder of this paper is organized as follows. We reveal the 

causes of unscalability of the existing implementations in Section 2, present and then evaluate DaRong in Section 3 and 4 50 

respectively, and conclude this work in Section 5.  

 

2 Existing implementations of routing network generation 

In existing couplers, the global information of a parallel decomposition generally is distributed among all processes of a 

component model, where a process only records its local parallel decomposition corresponding to the grid cells assigned to it. 55 

Thus, almost all existing couplers use the following 4 steps for generating a routing network between the parallel 

decompositions of a source (src) and a destination (dst) component model. 

1) Gathering global parallel decomposition: the src/dst root process gathers the global information of the src/dst parallel 

decomposition from all src/dst processes.  

2) Exchanging global parallel decomposition: the src/dst root process first exchanges the src/dst global parallel 60 

decomposition with the dst/src root process, and then broadcasts the dst/src global parallel decomposition to all src/dst 
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processes.  

3) Detecting common grid cells: each src/dst process detects its common grid cells with each dst/src process based on its 

local parallel decomposition and the dst/src global parallel decomposition.  

4) Generating the routing network: each src/dst process generates its local routing network according to the information 65 

about common grid cells.  

 

Given that each of the src and dst component models uses K processes and the corresponding grid size is N (the grid has N 

cells), the first and second steps correspond to collective communications with the time complexity of at least O(N*logK) and 

the memory complexity of O(N). Regarding the third step, the average time complexity corresponding to MCT (as well as 70 

CPL6/CPL7 and OASIS3-MCT that employ MCT for data transfer) on each src/dst process is O(N*N/K), because the main 

loop of this step consists of two levels, i.e., the first level corresponds to the local parallel decomposition (the average number 

of cells in the local parallel decomposition is N/K) while the second level corresponds to the dst/src global parallel 

decomposition. The average time complexity of the third step corresponding to C-Coupler is O(N), as C-Coupler first generates 

a map corresponding to the global parallel decomposition and next detects common cells based on looking up the map. 75 

Although this implementation can lower the time complexity, but introduces inefficient irregular memory accesses. As the last 

step does not depend on any global parallel decomposition, its average time complexity is O(N/K).  

 

Determined by the collective communications and the corresponding time complexity of O(N*logK), and the time complexity 

of O(N*N/K) or O(N) corresponding to common grid cells detection, existing implementations of routing network generation 80 

are of course inefficient and unscalable under the increment of processor cores. Moreover, in response to the memory 

complexity of O(N), more memory will be consumed when the model grids get finer.  

 

In the following context, existing implementations of routing network generation are called global routing network generation. 

 85 

3 Design and implementation 

 

3.1 Overall design 

Each cell of a grid can be numbered with a unique index from 1 to N (called global cell index), while each grid cell assigned 

to the same process can also be numbered with a unique local cell index. Thus, the information of a given parallel 90 

decomposition can be recorded as a Cell Local-Global Mapping Table (CLGMT), each element of which is a triple of global 
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cell index, process ID, and local cell index. For example, Tables 1 and 2 are the CLGMTs corresponding to the parallel 

decompositions in Fig. 1a and Fig. 1b respectively.  

 

Generally, the CLGMT entries of a parallel decomposition are distributed among the processes of a component model, which 95 

means a process only stores a part of the CLGMT. The key idea of the existing global implementation can be summarized as 

reconstructing the global CLGMT of the peer parallel decomposition in each process for routing network generation. To be a 

scalable solution, DaRong should be fully based on distributed CLGMT without reconstructing any global CLGMT. The 

reason why existing implementations have to depend on global CLGMTs is because the distribution of the CLGMT entries is 

determined by a model and thus a coupler generally has to view any distribution as random.  100 

 

Motivated by the above analysis, the key challenge to DaRong becomes how to efficiently rearrange the original distribution 

of the CLGMT entries of a given parallel decomposition into a regular intermediate distribution and how to efficiently generate 

the routing network based on the intermediate distribution. Specifically, we employ a regular intermediate distribution that 

evenly distributes the CLGMT entries among processes based on the ascending order of the global cell index. Such an 105 

intermediate distribution is not only simple, but also enables to easily achieve the rearrangement to the intermediate distribution 

via a sorting procedure similar to distributed sort. With the above preparations, DaRong is designed with the following major 

steps for generating a routing network between the src and dst component models: 

1) The src/dst component model rearranges the original distribution of the CLGMT entries of the src/dst parallel 

decomposition into the regular intermediate distribution.  110 

2) The src and dst component models exchange the CLGMT entries based on the intermediate distributions.  

3) Each src/dst process generates table entries of the sharing relationship about how each grid cell is shared between the 

processes of the src and dst component models, based on the src and dst CLGMT entries on the intermediate distributions.  

4) The src/dst component model rearranges the intermediate distribution of the entries of the sharing relationship table (SRT) 

into the original distribution of the CLGMT entries of the src/dst parallel decomposition.  115 

5) Each src/dst process generates its local routing network based on the local SRT entries.  

 

In the following context of this section, we will detail the implementation of each major step except the last one because it is 

similar to the last major step in the global implementation. 

 120 

3.2 Rearranging CLGMT entries intra a component model 

Such rearrangement is achieved via a divide-and-conquer sorting procedure that is similar to a merge sort with the keyword 

of global cell index. This procedure first sorts the CLGMT entries locally in each process, and next iteratively conducts 

distributed sort by a main loop of logK iterations (K is the number of processes of the src/dst component model). In an iteration, 
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processes are divided into distinct pairs and the two processes in each pair swap the CLGMT entries based on a point-to-point 125 

communication. Figure 2 shows an example of the distributed sort corresponding to the CLGMT entries in Table 1, and Table 

3 shows the distributed CLGMT after rearranging the CLGMT entries in Table 2.   

 

3.3 Exchanging CLGMT entries between component models 

After the rearrangement of the CLGMT in a component model, the CLGMT entries are sorted in an ascending order of the 130 

global cell indexes and evenly distributed among processes. The CLGMT entries reserved in each process therefore have a 

determinate and non-overlapping range of global cell indexes, and such a range can be easily calculated from the grid size, the 

number of total processes, and process ID. Thus, it is easy to calculate the overlapping relationship of global cell index range 

between a src process and a dst process. As it is only necessary to exchange CLGMT entries between a pair of src and dst 

processes with overlapping ranges, point-to-point communications only are enough for handling the exchange of the CLGMT 135 

entries.  

 

3.4 Generation of SRT 

After the previous major step, each process reserves two sequences of CLGMT entries corresponding to the src and dst parallel 

decompositions respectively. Given that the two sequences contain n1 and n2 entries respectively, the time complexity of 140 

detecting the sharing relationship is O(n1+n2), because the entries in each sequence have already been ordered in ascending 

global cell indexes, and a procedure similar to the kernel of merge sort that merges two ordered data sequences can handle 

such detection.  

 

To record the sharing relationship, a SRT entry is designed as a quintuple of global cell index, src process ID, src local cell 145 

index, dst process ID, and dst local cell index. Given a quintuple <q1,q2,q3,q4,q5>, it means that number q3 local cell in number 

q2 process of the src component model is number q1 global cell, and the data on it will be transferred to number q5 local cell 

in number q4 process of the dst component model. Table 4 shows the SRT in the src component model, calculated from the 

rearranged distributed CLGMT entries in Fig. 2 and Table 3.   

 150 

It is possible that multiple src CLGMT entries correspond to the same global cell index. Under such a case, any src CLGMT 

entry can be used for generating the corresponding SRT entries, because the src component model should guarantee that the 

data copies on the same grid cell are exactly the same. Given a dst CLGMT entry, if there is no src CLGMT entry with the 

same global cell index, no SRT entry will be generated. Given that multiple dst CLGMT entries correspond to the same global 

cell index and there is at least one src CLGMT entry with the same global cell index, a SRT entry will be generated for each 155 

dst CLGMT entry. 
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3.5 Rearranging SRT entries intra a component model 

After the previous major step, the SRT entries are distributed among processes of a component model according to the 

intermediate distribution. As a process can use only the SRT entries corresponding to its local cells for the last major step of 160 

local routing network generation, the SRT entries should be rearranged among the processes of a component model. We find 

that such rearrangement can also be achieved via a sorting procedure similar to the distributed sort with the keyword of src/dst 

process ID, or even the sorting procedure implemented for the first major step can be reused. Tables 5 and 6 show the SRT 

entries distributed in the src and dst component model respectively, after the rearrangement.  

 165 

3.6 Time complexity and memory complexity 

As DaRong does not reconstruct the global CLGMT, it only utilizes point-to-point communications and does not rely on any 

collective communication, and its average memory complexity is O(N/K) on each process. As the implementation of its most 

time-consuming major steps are similar to a merge sort, and the time complexity of merge sort is O(N*logN), the average time 

complexity of DaRong on each process is O(N*(logN)/K), and average communication complexity is O(N*(logK)/K).  170 

 

To facilitate the implementation of the sorting procedure, we force the number of processes regarding the 1st ~ 4th major steps 

to be the maximum power of 2 (2n) no larger than the total process number of the src/dst component model. For a process 

whose ID I is not smaller than 2n, its CLGMT entries will be merged into the process with the ID of I-2n before the first major 

step, and the SPT entries corresponding to it will be obtained from the process with the ID of I-2n after the fourth major step. 175 

This strategy will not change the above time complexity and memory complexity of DaRong, as 2n is larger than a half of the 

total process number.  

 

4 Evaluation  

For evaluating DaRong, we implemented it in C-Coupler2, which enables us to compare it with the original global routing 180 

network generation in C-Coupler2. We developed a toy coupled model consisting of two toy component models and C-

Coupler2 for the evaluation, which enables us to flexibly change the model settings in terms of grid size and number of 

processor cores (processes). The toy coupled model is run on a supercomputer, where each computing node on the 

supercomputer includes two Intel Xeon E5-2678 v3 CPUs (Intel(R) Xeon(R) CPU (24 processor cores in total)), and all 

computing nodes were connected with an InfiniBand network. The codes were compiled by an Intel Fortran and C++ compiler 185 
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at the optimization level O2, using an Intel MPI library (3.2.2). A maximum number of 3200 cores are used for running the 

toy coupled model. 

 

We made an evaluation under the variation of process numbers (Fig. 3; two component models use the same number of 

processor cores). For the grid size of 500,000 (Fig. 3a), the execution time of DaRong does not really decrease when using 190 

more processor cores. This result is reasonable although it does not match the time complexity of DaRong. The communication 

complexity of DaRong is O(N*(logK)/K), where logK stands for the number of point-to-point communications in each process 

and N/K stands for the average message size in each communication. The average message size corresponding Fig. 3a is small 

(about 160KB under 60 cores while about 6KB under 1600 cores), while the execution time of point-to-point communication 

cannot keep linear to the message size and may be unstable when the message size is small. Different from DaRong, the 195 

execution time of the global implementation increases rapidly with the increment of core number. As a result, DaRong 

outperforms the global implementation more significantly when using more cores. When the grid size gets larger (e.g., 

4,000,000 in Fig. 3b and 16,000,000 in Fig. 3c), DaRong still significantly outperforms the global implementation, while with 

better scalability. 

 200 

Considering a model can use more processor cores for acceleration when its resolution gets finer, we further evaluated the 

weak scalability of DaRong, where we concurrently increased the grid size and core number to achieve similar numbers of 

grid points per process. As shown in Table 7, the execution time of DaRong increases slowly while the execution time of the 

global implementation increases rapidly with the increment of grid size and core number. This demonstrates that DaRong 

achieves much better weak scalability than the global implementation.  205 

 

5 Conclusion 

In this paper, we propose a new distributed algorithm, DaRong, for routing network generation. As it does not introduce any 

collective communication and achieves much lower complexity in terms of time, memory and communication than the global 

implementation that is widely used in existing couplers, it is of course much more efficient and scalable than the global 210 

implementation. The evaluation results further demonstrate this conclusion.  

 

DaRong has already been implemented in C-Coupler2. Its code is publicly available in a C-Coupler2 version and will be 

further used in future C-Coupler versions. We do believe that existing couplers can also benefit from DaRong, for accelerating 

routing the network generation as well as the initialization of couplers. 215 

 

Code availability. The source code of DaRong can be viewed and run with C-Coupler2 and the toy coupled model via 

https://doi.org/10.5281/zenodo.3753217. 
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(a) A regular 2-D parallel decomposition 

in both X and Y direction 

 
(b) A regular 1-D parallel decomposition 

 in only X direction 

 

(c) The routing network from the parallel decomposition in Fig. 1a (Source) to the parallel decomposition in Fig. 1(b) 

(Destination). 

Figure 1. Two sample parallel decompositions of an 8x8 grid under 8 processes (Fig. 1a and 1b) and the routing 

network between them (Fig. 1c). Each colour corresponds to a process) 
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Figure 2. The distributed sort corresponding to the CLGMT entries in Table 1. Each iteration makes the CLGMT 

entries with larger global cell indexes reserved in the processes with larger IDs. For example, after the first iteration, 

the CLGMT entries with global cell indexes between 0 and 31 are reserved in P0~P3, while the remaining CLGMT 265 

entries are reserved in P4~P7.  

  

https://doi.org/10.5194/gmd-2020-91
Preprint. Discussion started: 21 April 2020
c© Author(s) 2020. CC BY 4.0 License.



12 

 

 

(a) Speedups under the grid size of 500,000. The execution time of DaRong and the global under 60 cores is 0.031 s 

and 0.129 s respectively.  270 

 

 

(b) Speedups under the grid size of 4,000,000. The execution time of DaRong and the global under 60 cores is 0.161 s 

and 0.863 s respectively. 

 275 

 

(c) Speedups under the grid size of 16,000,000. The execution time of DaRong and the global under 60 cores is 0.702 s 

and 3.44 s respectively. 

Figure 3. Performance of DaRong and the comparison with the original global routing network generation (Global) 

under different core numbers and grid sizes. Two toy component models use the same number of processor cores in 280 

each test case. The speedup in the left or middle graph of each sub figure is used for evaluating the scalability of DaRong 

or the global when increasing processor cores. It is the ratio between the execution time under 60 cores and the 

execution time under another core number. The speedup in the right graph of each sub figure is the ratio of the 

execution time between the global and DaRong, and bigger speedup means that is DaRong is faster.   
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Table 1. The Cell Local-Global Mapping Table (CLGMT) of the parallel decomposition in Fig. 1a 285 

Process ID Cell Local-Global Mapping Table entries 

0 <0,0,0>, <1,0,1>, <8,0,2>, <9,0,3>, <16,0,4>, <17,0,5>, <24,0,6>, <25,0,7> 

1 <2,1,0>, <3,1,1>, <10,1,2>, <11,1,3>, <18,1,4>, <19,1,5>, <26,1,6>, <27,1,7> 

2 <4,2,0>, <5,2,1>, <12,2,2>, <13,2,3>, <20,2,4>, <21,2,5>, <28,2,6>, <29,2,7> 

3 <6,3,0>, <7,3,1>, <14,3,2>, <15,3,3>, <22,3,4>, <23,3,5>, <30,3,6>, <31,3,7> 

4 <32,4,0>, <33,4,1>, <40,4,2>, <41,4,3>, <48,4,4>, <49,4,5>, <56,4,6>, <57,4,7> 

5 <34,5,0>, <35,5,1>, <42,5,2>, <43,5,3>, <50,5,4>, <51,5,5>, <58,5,6>, <59,5,7> 

6 <36,6,0>, <37,6,1>, <44,6,2>, <45,6,3>, <52,6,4>, <53,6,5>, <60,6,6>, <61,6,7> 

7 <38,7,0>, <39,7,1>, <46,7,2>, <47,7,3>, <54,7,4>, <55,7,5>, <62,7,6>, <63,7,7> 
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Table 2. The Cell Local-Global Mapping Table (CLGMT) of the parallel decomposition in Fig. 1b 

Process ID Cell Local-Global Mapping Table entries 

0 <0,0,0>, <8,0,1>, <16,0,2>, <24,0,3>, <32,0,4>, <40,0,5>, <48,0,6>, <56,0,7> 

1 <1,1,0>, <9,1,1>, <17,1,2>, <25,1,3>, <33,1,4>, <41,1,5>, <49,1,6>, <57,1,7> 

2 <2,2,0>, <10,2,1>, <18,2,2>, <26,2,3>, <34,2,4>, <42,2,5>, <50,2,6>, <58,2,7> 

3 <3,3,0>, <11,3,1>, <19,3,2>, <27,3,3>, <35,3,4>, <43,3,5>, <51,3,6>, <59,3,7> 

4 <4,4,0>, <12,4,1>, <20,4,2>, <28,4,3>, <36,4,4>, <44,4,5>, <52,4,6>, <60,4,7> 

5 <5,5,0>, <13,5,1>, <21,5,2>, <29,5,3>, <37,5,4>, <45,5,5>, <53,5,6>, <61,5,7> 

6 <6,6,0>, <14,6,1>, <22,6,2>, <30,6,3>, <38,6,4>, <46,6,5>, <54,6,6>, <62,6,7> 

7 <7,7,0>, <15,7,1>, <23,7,2>, <31,7,3>, <39,7,4>, <47,7,5>, <55,7,6>, <63,7,7> 
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Table 3. The distributed CLGMT after rearranging the CLGMT entries in Table 2 

Process ID CLGMT entries 

0 <0,0,0>, <1,1,0>, <2,2,0>, <3,3,0>, <4,4,0>, <5,5,0>, <6,6,0>, <7,7,0> 

1 <8,0,1>, <9,1,1>, <10,2,1>, <11,3,1>, <12,4,1>, <13,5,1>, <14,6,1>, <15,7,1> 

2 <16,0,2>, <17,1,2>, <18,2,2>, <19,3,2>, <20,4,2>, <21,5,2>, <22,6,2>, <23,7,2> 

3 <24,0,3>, <25,1,3>, <26,2,3>, <27,3,3>, <28,4,3>, <29,5,3>, <30,6,3>, <31,7,3> 

4 <32,0,4>, <33,1,4>, <34,2,4>, <35,3,4>, <36,4,4>, <37,5,4>, <38,6,4>, <39,7,4> 

5 <40,0,5>, <41,1,5>, <42,2,5>, <43,3,5>, <44,4,5>, <45,5,5>, <46,6,5>, <47,7,5> 

6 <48,0,6>, <49,1,6>, <50,2,6>, <51,3,6>, <52,4,6>, <53,5,6>, <54,6,6>, <55,7,6> 

7 <56,0,7>, <57,1,7>, <58,2,7>, <59,3,7>, <60,4,7>, <61,5,7>, <62,6,7>, <63,7,7> 
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Table 4. The Sharing Relationship Table (SRT) calculated from the rearranged distributed CLGMT entries in Fig. 2 

and Table 3. 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <1,0,1,1,0>, <2,1,0,2,0>, <3,1,1,3,0>, <4,2,0,4,0>, <5,2,1,5,0>, 

<6,3,0,6,0>, <7,3,1,7,0> 

1 
<8,0,2,0,1>, <9,0,3,1,1>, <10,1,2,2,1>, <11,1,3,3,1>, <12,2,2,4,1>, <13,2,3,5,1>, 

<14,3,2,6,1>, <15,3,3,7,1> 

2 
<16,0,4,0,2>, <17,0,5,1,2>, <18,1,4,2,2>, <19,1,5,3,2>, <20,2,4,4,2>, <21,2,5,5,2>, 

<22,3,4,6,2>, <23,3,5,7,2> 

3 
<24,0,6,0,3>, <25,0,7,1,3>, <26,1,6,2,3>, <27,1,7,3,3>, <28,2,6,4,3>, <29,2,7,5,3>, 

<30,3,6,6,3>, <31,3,7,7,3> 

4 
<32,4,0,0,4>, <33,4,1,1,4>, <34,5,0,2,4>, <35,5,1,3,4>, <36,6,0,4,4>, <37,6,1,5,4>, 

<38,7,0,6,4>, <39,7,1,7,4>  

5 
<40,4,2,0,5>, <41,4,3,1,5>, <42,5,2,2,5>, <43,5,3,3,5>, <44,6,2,4,5>, <45,6,3,5,5>, 

<46,7,2,6,5>, <47,7,3,7,5> 

6 
<48,4,4,0,6>, <49,4,5,1,6>, <50,5,4,2,6>, <51,5,5,3,6>, <52,6,4,4,6>, <53,6,5,5,6>, 

<54,7,4,6,6>, <55,7,5,7,6> 

7 
<56,4,6,0,7>, <57,4,7,1,7>, <58,5,6,2,7>, <59,5,7,3,7>, <60,6,6,4,7>, <61,6,7,5,7>, 

<62,7,6,6,7>, <63,7,7,7,7> 
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Table 5. The SRT entries distributed in the src component model after rearranging the SRT in Table 4 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <1,0,1,1,0>, <8,0,2,0,1>, <9,0,3,1,1>, <16,0,4,0,2>, <17,0,5,1,2>, 

<24,0,6,0,3>, <25,0,7,1,3> 

1 
<2,1,0,2,0>, <3,1,1,3,0>, <10,1,2,2,1>, <11,1,3,3,1>, <18,1,4,2,2>, <19,1,5,3,2>, 

<26,1,6,2,3>, <27,1,7,3,3> 

2 
<4,2,0,4,0>, <5,2,1,5,0>, <12,2,2,4,1>, <13,2,3,5,1>, <20,2,4,4,2>, <21,2,5,5,2>, 

<28,2,6,4,3>, <29,2,7,5,3> 

3 
<6,3,0,6,0>, <7,3,1,7,0>, <14,3,2,6,1>, <15,3,3,7,1>, <22,3,4,6,2>, <23,3,5,7,2>, 

<30,3,6,6,3>, <31,3,7,7,3> 

4 
<32,4,0,0,4>, <33,4,1,1,4>, <40,4,2,0,5>, <41,4,3,1,5>, <48,4,4,0,6>, <49,4,5,1,6>, 

<56,4,6,0,7>, <57,4,7,1,7> 

5 
<34,5,0,2,4>, <35,5,1,3,4>, <42,5,2,2,5>, <43,5,3,3,5>, <50,5,4,2,6>, <51,5,5,3,6>,  

<58,5,6,2,7>, <59,5,7,3,7> 

6 
<36,6,0,4,4>, <37,6,1,5,4>, <44,6,2,4,5>, <45,6,3,5,5>, <52,6,4,4,6>, <53,6,5,5,6>, 

<60,6,6,4,7>, <61,6,7,5,7> 

7 
<38,7,0,6,4>, <39,7,1,7,4>, <46,7,2,6,5>, <47,7,3,7,5>, <54,7,4,6,6>, <55,7,5,7,6>, 

<62,7,6,6,7>, <63,7,7,7,7> 
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Table 6. The SRT entries distributed in the dst component model after rearranging the SRT in Table 4 

Process ID Sharing Relationship Table entries 

0 
<0,0,0,0,0>, <8,0,2,0,1>, <16,0,4,0,2>, <24,0,6,0,3>, <32,4,0,0,4>, <40,4,2,0,5>, 

<48,4,4,0,6>, <56,4,6,0,7> 

1 
<1,0,1,1,0>, <9,0,3,1,1>, <17,0,5,1,2>, <25,0,7,1,3>, <33,4,1,1,4>, <41,4,3,1,5>, 

<49,4,5,1,6>, <57,4,7,1,7> 

2 
<2,1,0,2,0>, <10,1,2,2,1>, <18,1,4,2,2>, <26,1,6,2,3>, <34,5,0,2,4>, <42,5,2,2,5>, 

<50,5,4,2,6>, <58,5,6,2,7> 

3 
<3,1,1,3,0>, <11,1,3,3,1>, <19,1,5,3,2>, <27,1,7,3,3>, <35,5,1,3,4>, <43,5,3,3,5>, 

<51,5,5,3,6>, <59,5,7,3,7> 

4 
<4,2,0,4,0>, <12,2,2,4,1>, <20,2,4,4,2>, <28,2,6,4,3>, <36,6,0,4,4>, <44,6,2,4,5>, 

<52,6,4,4,6>, <60,6,6,4,7> 

5 
<5,2,1,5,0>, <13,2,3,5,1>, <21,2,5,5,2>, <29,2,7,5,3>, <37,6,1,5,4>, <45,6,3,5,5>, 

<53,6,5,5,6>, <61,6,7,5,7> 

6 
<6,3,0,6,0>, <14,3,2,6,1>, <22,3,4,6,2>, <30,3,6,6,3>, <38,7,0,6,4>, <46,7,2,6,5>,    

<54,7,4,6,6>, <62,7,6,6,7> 

7 
<7,3,1,7,0>, <15,3,3,7,1>, <23,3,5,7,2>, <31,3,7,7,3>, <39,7,1,7,4>, <47,7,3,7,5>, 

<55,7,5,7,6>, <63,7,7,7,7> 
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Table 7. Performance of DaRong and the comparison with the original global routing network generation 

(Global) when concurrently increasing the grid size and core number.  

Core number Grid size Execution time (s) of DaRong Execution time (s) of Global Global/DaRong 

250 500,000 0.032 0.262 8.19 

450 1,000,000 0.034 0.492 14.47 

900 2,000,000 0.041 1.158 28.24 

1600 4,000,000 0.045 1.949 43.31 
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